Economics 8040
Problem set 2
Lastrapes
Fall 2006

1. The model below adds a flat rate income tax to a simple linear macroeconomic model where the price level is exogenous, and requires that the government deficit be financed by money creation. The model is

\[y_t = -a_1 r_t + g_t \]
\[m_t = b_1 y_t - b_2 r_t \]
\[\tau_t = \mu_0 + \mu_1 y_t \]
\[m_{t+1} = m_t + g_t - \tau_t, \]

where \(y \) is output, \(r \) is the nominal interest rate, \(g \) is government spending, \(m \) is the nominal money stock, \(\tau \) are tax revenues collected by the government, and all coefficients are positive. The price level \(p \) is exogenous by assumption and is therefore ignored in this problem. The first equation is a simplified aggregate demand relationship (the “IS” curve), the second shows the money market equilibrium condition, the third defines the income tax (\(\mu_0 \) is a lump sum amount, while \(\mu_1 \) is the marginal income tax rate), and the fourth requires the Fed to issue money (next period) if there is a budget deficit (there are no bonds). Assume that \(y_t, r_t, \tau_t, \) and \(m_{t+1} \) are the endogenous variables. The money stock is *exogenous* at a point in time, but *endogenous* over time.

a. Find the dynamic multiplier \(\frac{\partial \tau_t}{\partial g_{t-k}} \), for all \(k \).
b. What happens to tax revenues in the long-run if the government increases \(g \) once and for all (i.e. permanently)? Explain.
c. What happens to tax revenues in the long-run if lump-sum taxes (\(\mu_0 \)) are increased once and for all (assuming \(g \) is exogenous)? Explain.
d. Suppose we want to “endogenize” the price level? How would you alter the model to allow the price level to be endogenous? (You don’t need to solve this model; just indicate how you would set it up.)

2. Look back at the rational expectations model of the Phillips curve, discussed in class (pp. 32-33). In writing the reduced form for equilibrium output, we assumed that the current demand and supply shocks (\(\epsilon^d_t \) and \(\epsilon^s_t \)) were not included in the information set used to determine expectations. Suppose now that agents observe \(\epsilon^d_t \) when they form their expectations (i.e. the current demand shock is part of the information set \(I_{t-1} \)). What will the reduced form for output look like in this case? Explain the economics.

3. The following problem is a bit more difficult than what you might expect on the mid-term, but it is good practice for understanding unstable roots and forward solutions. Consider Cagan’s model of the price level, which is familiar from class:

\[m_t - p_t = \alpha(E_t p_{t+1} - p_t) \]

where \(m \) is the natural log of nominal money, \(p \) is the log of the price level, and \(E_t \) denotes the rational expectation operator conditional on information up to and including time \(t \). Assume that \(\alpha < 0 \), and defining \(\beta = \frac{\alpha}{1 - \beta} \), assume that \(\lim_{k \to \infty} \beta^k E_t p_{t+k} = 0 \). Finally, suppose that \(m \) is exogenous and is determined by the following process, where \(\gamma \) is positive but less than or equal to one and \(\epsilon \) is a zero-mean random variable:

\[m_t = \gamma m_{t-1} + \epsilon_t. \]
a. Note that the second equation is a first-order difference equation in m_t. Keeping in mind that the expected value of ϵ is zero, prove that $E_t m_{t+i} = \gamma^i m_t$.

b. We know from class that Cagan’s model implies an unstable difference equation for the price level, and we provided a 'forward' solution to that difference equation. Use the result of part (a) in this solution to show how the equilibrium price level p_t depends on m_t.

c. Now, using your knowledge of difference equations, go back to the money difference equation and solve for m_t as a function of current and past ϵ_t. Use this result in part (b). If you’ve done this correctly, you will have an expression for the equilibrium price at time t as a function of current and past ϵs.

d. Discuss the implied dynamics of this model; in particular, what are the dynamic multipliers? Can you come up with an explanation of the economics underlying these multipliers?

e. How does your answer to (d) change if $\gamma = 1$?