Fiscal Policy and the Real Exchange Rate*

Santanu Chatterjee†
University of Georgia

Azer Mursagulov‡
Ministry of Finance, Republic of Azerbaijan

Abstract

This paper examines the mechanisms through which government spending affects the dynamics of the real exchange rate. Using a two-sector dependent open economy model with intersectoral mobility costs for private capital, we show that public investment generates a (i) non-monotonic U-shaped adjustment path for the real exchange rate with sharp intertemporal trade-offs, and (ii) a crowding-in of private consumption, consistent with stylized facts. The effects of public consumption, however, are in sharp contrast to those of public investment. The effect of government spending on the real exchange rate depends critically on (i) the sectoral composition of public spending, (ii) the underlying financing policy, (iii) the sectoral intensity of private capital in production, (iv) the relative sectoral productivity of public infrastructure, (v) the elasticity of substitution in production, and (vi) intersectoral mobility costs for capital. In deriving these results, we identify conditions under which the predictions of the neoclassical open economy model can be reconciled with empirical regularities. Our results underscore the importance of decoupling the effects of government investment from government consumption in understanding the relationship between fiscal policy and the real exchange rate.

Keywords: Fiscal policy, public investment, government spending, consumption, real exchange rate.

JEL Classification: E6, F3, F4

*This paper has benefited from comments received from S.M. Ali Abbas, Andrew Berg, Salifou Issoufou, William Orie, Stephen Turnovsky, Felix Rioja, Michael Funke, the Fiscal Affairs and Research Departments of the IMF, and from presentations at University of Hamburg, Karlsruhe Institute of Technology, Georgia State University, the International Development Workshop at the Federal Reserve Bank of Atlanta, and the Annual Meetings of the Society for Computational Economics in Prague. Thomas Lebesmuehlbacher provided valuable research assistance for this project. Chatterjee would like to acknowledge a grant from the Sarah H. Moss Foundation that supported the research for this paper. The paper was completed while Chatterjee was visiting the University of Hamburg in Germany, whose hospitality is gratefully acknowledged.

†Corresponding Author: Department of Economics, Terry College of Business, University of Georgia, Athens, GA 30602 USA. Phone: +1-706-542-1709. Email: schatt@uga.edu

‡Debt management Agency, Ministry of Finance, Republic of Azerbaijan. 83 S. Vurgun Street, Baku AZ1022. Email: mursagulov@gmail.com, +994124044604.
1 Introduction

Emerging markets have recently embarked on an ambitious expansion of government spending, mainly on public infrastructure such as roads, airports, rail, power supply, water, telecommunication networks, etc., as a means to sustain their high economic growth rates from the last two decades. Infrastructure investment is one of the key drivers of economic growth in these markets, with countries like China and India allocating a growing share of GDP to a variety of infrastructure projects.\(^1\) Globally, the demand for infrastructure will require about $57 trillion in investment by 2030, with about 70% of this demand coming from roads, power, and water (McKinsey, 2013). Over the period 1990-2013, the BRICS countries spent, on average, about 9% of their GDP on public infrastructure, compared to about 3% for the G-7 countries.\(^2\) In an era of global economic integration, the dynamic effects of these policies on external prices and competitiveness will be of critical importance for both developing and developed countries. Understanding this relationship in the context of a dynamic general equilibrium model is the central objective of this paper.

The dynamic implications of government spending in open economies have been the subject of a growing but inconclusive literature in international macroeconomics. This paper attempts to contribute to three issues in this literature:

(1) The theoretical literature on the link between fiscal policy and the real exchange rate has generally treated government spending as representing public consumption, which impinges on the economy as a pure demand shock. An increase in government spending thus raises the demand for non-traded goods and their relative price, causing a real appreciation of the exchange rate in the short run. The long-run real exchange rate, on the other hand, remains unaffected, being determined by supply-side factors such as sectoral productivity.\(^3\) In sharp contrast, the recent empirical literature on this issue has documented that government spending generates a short-run real depreciation of the exchange rate. The empirical literature, however, does not usually disentangle the relative effects of government consumption and investment, which may impinge on short-run and long-run resource allocation in dramatically different ways.\(^4\) This is a critical issue, since public investment (and its fi-

\(^1\)According to a recent report by the Urban Land Institute and Ernst & Young (2013), China has fast-tracked work on more than 60 infrastructure projects and 82 new airports in 2013 alone, with a price tag of $158 billion. India plans to increase investment in infrastructure (mainly roads and telecommunications) from 5.2% of GDP in the period 2003-2007 to 10% during 2013-2017.

\(^2\)The global average for infrastructure investment was about 6.7% of GDP during this period (Source: WDI 2014).

\(^3\)The theoretical literature has been built on either the flexible-price neoclassical dependent economy model, with prominent early contributions including Obstfeld (1989), van Wincoop (1993), and Brock and Turnovsky (1994), or the sticky-price Keynesian open economy framework based on the Mundell-Fleming model, dating back to Dornbusch (1976) and, more recently, Obstfeld and Rogoff (1995).

\(^4\)See, for example, Corsetti and Muller (2006), Kim and Roubini (2008), Monacelli and Perotti (2010),
nancing) can generate strong supply-side effects by impinging on private-sector productivity. Further, the short-run demand-side effects of government investment spending may also be influenced by the expectations of higher productivity benefits in the long-run. A priori, the intertemporal relationship between the composition of government spending (investment versus consumption) and the real exchange rate is not clear. We fill an important gap in the literature by providing a systematic analysis of this relationship.

(2) A large empirical literature has documented the strong persistence and non-linearity in the adjustment of the real exchange rate over time, implying very long periods of non-monotonic adjustment following an underlying shock. By contrast, the predicted deviations of the exchange rate (from equilibrium) generated by theoretical models are very short-lived and monotonic, with implausibly fast speeds of convergence. In this paper, we focus on the dynamic interaction of two factors that may help resolve this discrepancy. First, we introduce government investment that is tied to the stock of public infrastructure, which is accumulated only gradually over time (such as roads, ports, power grids, etc.). Therefore, the trade-off between the short-run resource withdrawal effects of public spending and the gradual realization of long-run productivity gains will be reflected in the adjustment path of relative prices. Second, it may be costly for investors to re-allocate private capital across sectors in response to the long-run productivity benefits of public investment. Indeed, as we will demonstrate in this paper, the interaction between these two factors can generate both persistence and non-linearity in the dynamic adjustment of the real exchange rate. Moreover, we also show that changes in government consumption cannot generate either the observed persistence or the non-linear adjustment of the real exchange rate. This further underscores the importance of de-coupling the effects of public investment from consumption.

(3) Another contentious issue relates to the short-run correlation between government spending and private consumption in open economies. Theoretical models predict a short-run negative correlation: by withdrawing resources from the private sector, government spending raises the marginal utility of wealth which, in turn, leads agents to reduce the consumption of all normal goods in the short run ("crowding out" effect). By contrast, recent empirical studies have documented a positive correlation between government spending and private

Caporale et al. (2011), Enders et al. (2011), Bouakez et al. (2011), and Ravn et al. (2012). Abbas et al. (2011) provide an exhaustive review of both the theoretical and empirical literature that links government spending to the real exchange rate.

consumption in the short run.6 Again, the question here is whether focusing on government investment rather than consumption may help resolve this issue. Intuitively, an increase in government spending allocated to the creation of public infrastructure that raises the long-run productivity of both private capital and labor might cause private agents to increase private consumption in the short run, by borrowing from their future (higher) expected income.

In this paper, we examine the mechanism through which government spending (both on public infrastructure as well as public consumption) and accompanying financing policies affect the dynamics of a two-sector open economy, with a particular focus on the real exchange rate, private consumption, and the sectoral allocation of capital and labor. The model we employ is characterized by the following features: (i) two production sectors, producing traded and non-traded goods, respectively, using private capital and labor, with all private investment being created in the traded goods sector, while investment in the non-traded sector taking place only by the transfer of resources from the traded to the non-traded sector, (ii) a gradually accumulating stock of government-provided infrastructure capital (henceforth "public capital") that augments the productivity of the private factors of production through a spillover effect, and a flow of government spending on consumption goods,7 (iii) the use of both distortionary and non-distortionary sources of financing government spending, and (iv) the presence of convex intersectoral mobility costs for private capital: we assume that it is costly for agents to transfer private capital across sectors for investment purposes.

The introduction of sectoral mobility costs for private capital in the analytical model deserves special comment. These costs have been studied extensively in the international trade literature, in the context of the two-sector Heckscher-Ohlin model; see Mayer (1974), Jones (1975), Mussa (1978), and Neary (1982). Morshed and Turnovsky (2004) discuss several examples from post-World War II Western Europe to motivate the presence of these costs (they label these as intersectoral adjustment costs), such as the costly retro-fitting of war-time industries to produce consumer goods for the post-war era. Thus, transferring capital across sectors might be associated with non-trivial costs in terms of retro-fitting, adapting to a different technology, time, labor, etc. More recently, the importance of these costs in the context of natural resources has also been discussed by van der Ploeg (2011).

The value-added of this paper must be evaluated in the context of two closely related

\footnotesize
6See, for example, Fatas and Mihov (2001), Blanchard and Perotti (2002), and Ravn et al. (2012).

studies, namely Morshed and Turnovsky (2004), and Galstyan and Lane (2009). First, while Morshed and Turnovsky (2004) introduce convex mobility costs for capital in a two-sector dependent economy model, their focus is entirely on government consumption. By contrast, we distinguish the consequences of government investment in the economy’s stock of public capital from those of government consumption. Indeed, the combination of a gradually accumulating stock of public capital and intersectoral mobility costs enables us to identify plausible conditions under which the two-sector dependent open economy model yields qualitative predictions that are consistent with stylized facts. Second, while Galstyan and Lane (2009) examine the public investment-real exchange rate link, their analysis is restricted to the (i) steady-state, (ii) costless movement of capital across sectors, and (iii) non-distortionary financing of public investment. We conduct a full dynamic analysis that characterizes the intertemporal trade-offs in the adjustment of the real exchange rate in response to government spending shocks, and focus on a broad range of fiscal issues, such as the sectoral composition of government investment spending and the effects of distortionary tax-financing on sectoral income. Third, while both Morshed and Turnovsky (2004) and Galstyan and Lane (2009) assume that private investment originates in the non-traded sector, we use the traded sector as the source of investment. We view this as a more plausible assumption, since most developing countries import a large proportion of capital goods for production purposes.

The analytical structure we employ yields a seventh-order non-linear dynamic system with four state and three jump variables, hence requiring a numerical solution. The results of our policy experiments can be summarized as follows:

(a) Government spending on infrastructure investment can generate a persistent and non-monotonic U-shaped path for the real exchange rate (following its instantaneous response), thereby generating sharp intertemporal trade-offs in its dynamic adjustment. By contrast, a corresponding increase in government consumption leads to a quick and monotonic adjustment of the real exchange rate, without any intertemporal trade-offs. The result that the real exchange rate depreciates in the short and medium-run in response to an increase

8A recent contribution by Cerra et al. (2010) also examines the effects of financing public investment by foreign aid. However, they model the flow of public investment as being relevant for production rather than the accumulated stock of public capital, along with a costless transfer of capital across sectors. The distinction between the stock and flow specifications turns out to be crucial for the predictions of the model. Berg et al. (2010) also develop an open economy DSGE model with public investment and the real exchange rate, but their focus is on the consequences of scaling-up of foreign aid and the Dutch Disease for cyclical fluctuations in low-income countries.

9Non-linearities in the adjustment path of the real exchange rate have been the subject of focus in models with transaction costs in international arbitrage; see Taylor et al. (2001) for a review of this literature. We also derive a non-linear adjustment path, albeit from a very different source (intersectoral mobility costs and a gradually accumulating stock of public capital).
in government spending is consistent with the recent findings of Corsetti and Muller (2006), Monacelli and Perotti (2010), Enders et al. (2011), Ravn et al. (2012), and Bouakez et al. (2012). However, we show that this behavior is consistent with the presence of government investment, but not consumption.\(^{10}\)

(b) The transitional (the length and depth of the U-shaped adjustment), and steady-state response of the real exchange rate to an increase in public investment depends critically on (i) the sectoral composition of government spending on infrastructure (i.e., whether the spending increase impinges on traded or non-traded output), (ii) the underlying financing policy (lumpsum tax or sectoral income tax), (iii) the sectoral intensity of private capital, and (iv) the sectoral output elasticity of public capital, (v) the elasticity of substitution in production, and (vi) the magnitude of intersectoral mobility costs. We also identify conditions under which an increase in government spending leads to an instantaneous depreciation of the real exchange rate, as has been documented in recent empirical studies.

(c) The sectoral composition of government investment, the underlying financing policy, and the output elasticity of public capital are important for generating the observed short-run positive correlation between government spending and private consumption. We identify conditions for each of these factors that generate this positive correlation in the absence of a home bias in consumption, thereby underscoring the fact that such an observation is not inconsistent with the neoclassical model. Again, we show that changes in public consumption cannot generate the positive association between government spending and consumption observed in the data.

Finally, we note that our paper is related to a small but growing theoretical literature that attempts to explain the observed short-run depreciation of the real exchange rate in response to an increase in government spending. These include Kollman (2010), Corsetti et al. (2011), Bouakez and Eyquem (2011), and Ravn et al. (2012). These papers focus on government consumption and factors such as incomplete markets, spending reversals, habit formation, and the aggressiveness of monetary policy. We view our contribution as complementary to this body of work, by focusing instead on government investment, its financing, a broader range of intertemporal issues, and highlighting the importance of an alternative source of friction in the neoclassical model, namely, the interaction between the gradual accumulation of public capital and intersectoral mobility costs for private capital.

The rest of the paper is organized as follows. Section 2 develops a canonical two-sector dependent economy model with public capital and intersectoral adjustment costs, Section

\(^{10}\)In general, the share of public consumption is larger than public investment in government budgets across countries. However, the dynamics of the real exchange rate depend on shocks or innovations to the different categories of government spending, rather than the existing levels or shares of spending. Therefore, shocks to public investment will affect a country’s relative prices, irrespective of its share in total spending.
3 describes the numerical calibration of the model, and Section 4 reports the results of counterfactual policy experiments. Section 5 discusses the sensitivity analysis, and Section 6 concludes.

2 The Analytical Framework

We consider a small open economy with an infinitely-lived representative agent who maximizes utility from the consumption of a traded good and a domestically produced non-traded good. There are two production sectors in this economy, namely the traded goods sector and the non-traded goods sector. Each sector uses three factors of production: private capital, labor, and a government-provided economy-wide stock of public capital (infrastructure). The stock of public capital represents a non-excludable and non-rival public good that enhances the productivity of private capital and labor in both sectors through a positive spillover effect. The government appropriates fractions of both traded and non-traded output for public investment, and finances this spending using distortionary income taxes (levied on incomes in both sectors) as well as lumpsum taxes (or debt). Finally, we will assume that all private investment takes place in the traded sector, and it is costly for the agent to transfer resources from the traded to the non-traded sector for investment in that sector. To close the model, we assume that the agent accumulates debt over time through an internationally traded bond and faces an upward-sloping supply curve of debt, with the interest rate on borrowing being determined as a markup over the world interest rate. We treat the traded good as a numeraire, so that the relative price of the non-traded good is the real exchange rate, with an increase denoting a real appreciation (and vice-versa).

2.1 Resource Allocation in the Private Sector

The representative agent’s intertemporal utility function is given by

$$U = \int_{0}^{\infty} U(C_T, C_N) e^{-\beta t} dt, \quad U_i > 0, U_{ii} < 0, \ i = T, N$$

subject to a flow budget constraint

$$\dot{B} = rB + C_T + I_T + \Omega_T - (1 - \tau_T) Y_T - p [(1 - \tau_N) Y_N - C_N - \Omega_N] + T_L$$

where, C_T and C_N denote the consumption of the traded and non-traded good, respectively, while I_T denotes private investment in the traded sector. B denotes the agent’s current
The agent produces output \(Y_T \) in the traded-goods sector and \(Y_N \) in the non-traded sector, and the functions \(\Omega_T \) and \(\Omega_N \) represent convex installation costs for private capital in each sector. The agent pays taxes on output produced in both sectors, with traded output being taxed at the rate \(\tau_T \) and non-traded output being taxed at the rate \(\tau_N \). The agent also pays a lumpsum tax, \(T_L \), denominated in terms of the traded good. Finally, the relative price of the non-traded good, i.e., the real exchange rate, is denoted by \(p \), with the traded good being treated as the numeraire.

The interest rate on borrowing is endogenous, and is a mark-up over the exogenous world interest rate:

\[
 r = r^* + \omega \left(\frac{B}{K} \right), \quad \omega' > 0
\]

(3)

where \(r^* \) is the world interest rate, \(K \) is the economy’s aggregate stock of private capital, and the mark-up or premium \(\omega(.) \) is a measure of debt-servicing capacity, specifically the aggregate debt-to-capital ratio. However, in making resource allocation decisions the agent takes the borrowing rate, \(r \), as given which, in turn, is determined from the macroeconomic equilibrium.\(^{11}\)

Production of final goods in the traded and non-traded sectors uses a standard neoclassical technology and three factors: sectoral private capital and labor, and the economy-wide aggregate stock of public capital, provided by the government:

\[
 Y_i = Y_i(K_i, L_i, K_G), \quad i = T, N
\]

(4)

In (4), \(K_i \) and \(L_i \) represent the employment of private capital and labor in sector \(i \). The stock of public capital, \(K_G \), generates services that are complementary to the private factors in each sector, enhancing their productivity along the transition path and in the long run. The sectoral production functions are characterized by diminishing returns to each factor of production.

Private investment originates in the traded good sector, but since both sectors use capital as an input in production, some resources must be transferred from the traded to the non-traded sector for investment purposes. The rate of accumulation of private capital in the

\(^{11}\)In small open economy models with a fixed world interest rate and discount factor, the marginal utility of wealth must be a constant along the transition path, with the consequence that foreign asset holdings can become indeterminate. Introducing an endogenous world interest rate that depends on the stock of debt or some measure of debt-servicing capacity is a common way to close these models; See, for example, Eaton and Gersovitz (1981), Turnovsky (1997), and Uribe and Schmitt-Grohe (2003).
traded goods sector is given by

\[K_T = I_T - \Gamma (X) - \delta_T K_T \] \hspace{1cm} (5)

where \(I_T \) denotes the rate of private investment in the traded sector and \(\delta_T \) is the rate of depreciation of private capital in that sector. \(X \) denotes the amount of resources that is transferred from the traded to the non-traded sector for investment, with \(\Gamma (X) \) capturing the assumption that this transfer is costly:

\[\Gamma (X) = X + \frac{h}{2} X^2, \quad h \geq 0 \] \hspace{1cm} (6)

According to (6), transferring \(X \) units of output from the traded to the non-traded sector for investment incurs a mobility cost given by \(\frac{h}{2} X^2 \), i.e., the intersectoral transfer requires the use of additional output, the marginal cost of which is given by the parameter \(h \). Note that (i) \(X \leq 0 \), indicating that disinvestment in the non-traded sector may lead to resources flowing back to the traded sector; (ii) when \(h = 0 \), capital is perfectly mobile across the two sectors, and (iii) when \(h \to \infty \), capital is fully immobile and specific only to the traded sector.\(^{12} \) Capital accumulation in the non-traded sector is then given by

\[\dot{K}_N = X - \delta_N K_N \] \hspace{1cm} (7)

with \(\delta_N \) denoting the depreciation rate for private capital installed in the non-traded sector.

In addition to the cost of transferring capital across sectors, we also assume that installing capital in each sector incurs convex installation (adjustment) costs, as in Hayashi (1982):

\[\Omega_T = \frac{h_T}{2} \left(\frac{I_T^2}{K_T} \right), \quad h_T > 0 \] \hspace{1cm} (8a)

\[\Omega_N = \frac{h_N}{2} \left(\frac{X^2}{K_N} \right), \quad h_N > 0 \] \hspace{1cm} (8b)

where \(h_T \) and \(h_N \) represent adjustment cost parameters in the traded and non-traded sectors,

\(^{12}\)The case where \(h = 0 \) is identical to the two-sector Heckscher-Ohlin model with costless movement of factors of production across sectors, while the case where \(h \to \infty \), approximates the Specific Factors model, with capital being specific only to the traded sector. The specification in (6) follows is similar to the one adopted by Morshed and Turnovsky (2004), with two important differences: first, while Morshed and Turnovsky (2004) assume that the transfer cost depends on the ratio of the output transfer \(X \) to the stock of installed capital in the non-traded sector, i.e., \(\frac{X^2}{K_N} \), we simply assume that the transfer cost depends on \(X \) itself. Second, in their specification, investment originates in the non-traded sector, while in ours its origin is in the traded sector.
respectively.\(^{13}\)

The market-clearing condition in the non-traded sector is given by

\[Y_N = C_N + \Omega_N + G_N \]

(9)

where \(G_N \) represents the proportion of non-traded output appropriated by the government for public spending, with

\[G_N = G^I_N + G^C_N \]

(9a)

where \(G^I_N \) and \(G^C_N \) represent government spending from non-traded output for public investment and consumption, respectively.

The agent is endowed with one unit of time for work, which it uses to allocate labor supply to the two sectors. The labor market equilibrium condition is then given by

\[L_T + L_N = 1 \]

(10)

The agent chooses the rate of consumption of the two goods, sectoral investment, and the allocation of labor to maximize (1), subject to (2), (5), (7), and (10). The agent takes the government policy variables and the stock of public capital as given, and at the beginning of the planning horizon, is endowed with an initial stock of bonds and private capital, given by \(B(0), K_T(0), \) and \(K_N(0) \). The current-value Hamiltonian function is

\[
H = U(C_T, C_N) e^{-\beta t} dt \\
+ \lambda e^{-\beta t} \left[\dot{B} - rB - C_T - I_T - \Omega_T + (1 - \tau_T)Y_T + p[(1 - \tau_N)Y_N - C_N - \Omega_N] - T_L \right] \\
+ q_T' e^{-\beta t} \left[I_T - \Gamma (X) - \delta_T K_T - \dot{K}_T \right] + q_N' e^{-\beta t} \left[X - \delta_N K_N - \dot{K}_N \right] + q_L' (1 - L_T - L_N)
\]

(11)

where \(\lambda \) is the shadow price of the traded bond (debt), \(q_T' \) and \(q_N' \) are the respective shadow prices for traded and non-traded private capital, and \(q_L' \) is the shadow price of sectoral employment. The optimality conditions are

\[
U_T(C_T, C_N) = \lambda
\]

(11a)

\[
U_N(C_T, C_N) = p\lambda
\]

(11b)

\[
\dot{\lambda} = \lambda (\beta - r)
\]

(11c)

\(^{13}\)It is important to distinguish between the \textit{intersectoral} mobility cost for capital, given in (6) and the \textit{within-sector} installation or adjustment costs, given by (8a). In other words, while (6) captures the cost of moving output from the traded to the non-traded sector for investment, (8a) and (8b) captures the \textit{within-sector} cost of installing capital, once sectoral investment decisions have been made by the agent.
\[1 + h_T \left(\frac{I_T}{K_T} \right) = q_T \]
\[X = \frac{q_N - q_T}{hq_T + h_N (p/K_N)} \]
\[\frac{\dot{q}_T}{q_T} + \frac{1}{q_T} \left[(1 - \tau_T) \frac{\partial Y_T}{\partial K_T} + \frac{(q_T - 1)^2}{2h_T} \right] - \delta_T = r \]
\[\frac{\dot{q}_N}{q_N} + \frac{p}{q_N} \left[(1 - \tau_N) \frac{\partial Y_N}{\partial K_N} + \frac{h_N}{2} \left(\frac{X}{K_N} \right)^2 \right] - \delta_N = r \]
\[(1 - \tau_T) \frac{\partial Y_T}{\partial L_T} = p(1 - \tau_N) \frac{\partial Y_N}{\partial L_N} \]
\[\lim_{t \to \infty} \lambda Be^{-\beta t} = \lim_{t \to \infty} q_T K_T e^{-\beta t} = \lim_{t \to \infty} q_N K_N e^{-\beta t} = 0 \]

where, \(q_T = \frac{q'_T}{\lambda} \) and \(q_N = \frac{q'_N}{\lambda} \) represents the shadow price of traded and non-traded capital relative to that of debt.

The first-order conditions (11a) and (11b) equate the marginal utility of consumption from each sector to the marginal utility of wealth, denominated in terms of the traded bond. (11c) is the standard no-arbitrage condition for a small open economy, which states that the evolution of the shadow price of debt is proportional to the difference between the rate of time preference and the interest (borrowing) rate. (11d) represents the optimal choice of investment in the traded sector, equating its return to its relative shadow price. (11e) is the corresponding condition for private investment in the non-traded sector, which depends on the difference between the sectoral shadow prices of capital: as long as \(q_N > q_T \), resources for investment will be transferred to the non-traded sector from the traded sector. (11f) and (11g) are the no-arbitrage conditions for capital investment in the two sectors, equating their net after-tax return to the interest rate. (11h) states that the after-tax return to labor in each sector must be the same in equilibrium and, finally, (11i) lists the transversality conditions for the three private assets.

From (11a) and (11b), we can derive the policy functions for sectoral consumption:

\[C_i \equiv C_i (p, \lambda), \ i = T, N \]

where,

\[\frac{\partial C_i}{\partial \lambda} < 0, \ \frac{\partial C_T}{\partial p} > 0, \ \frac{\partial C_N}{\partial p} < 0, \ i = T, N \]

An increase in the marginal utility of wealth reduces the consumption of both traded and non-traded good, as the agent increases savings to offset for the increase in \(\lambda \). A real
appreciation of the exchange rate makes the non-traded good more expensive relative to
the traded good, causing the agent to allocate resources away from non-traded consumption
towards traded consumption (and vice-versa).

2.2 The Public Sector

The government spends both traded and non-traded output to generate new public
investment in public capital. Let sectoral investment by the government be given by G^l_i ($i = T, N$). The spending rules for each sector are

$$G^l_i = g^l_i Y_i, \quad 0 < g^l_i < 1, \quad i = T, N \quad (13)$$

where g^l_i represents the rate of public investment from sector i ($i = T, N$). As such, g^l_i represent policy variables for the government which can be used to alter the rate of sectoral private investment. These can also be thought of as representing the composition of government spending on infrastructure. The assumption that government spending impinges on both traded and non-traded output is consistent with the findings of Abbas et al. (2011), who report that in developing countries, a significant amount of government spending falls on traded goods.

Public capital accumulates according to

$$\dot{K}_G = G^l_T + G^l_N - \delta_G K_G = g^l_T Y_T + g^l_N p Y_N - \delta_G K_G \quad (14)$$

where δ_G represents the rate of depreciation of public capital. The government maintains a balanced budget at all points of time, using tax revenues to finance spending on infrastructure and the investment subsidy:

$$G^l_T + G^c_T + p (G^l_N + G^c_N) = \tau_T Y_T + \tau_N p Y_N + T_L \quad (15)$$

where, G^c_T denotes government consumption spending from traded output, with $G^c_T = g^c_T Y_T$. Similarly, for non-traded public consumption, we assume that $G^c_N = g^c_N Y_N$, where g^c_i ($i = T, N$) denote the sectoral rates of public consumption.

The evolution of the current account is obtained by combining (2) with (15):

$$\dot{B} = rB + C_T + I_T + \Omega_T - (1 - g_T) Y_T \quad (16)$$
2.3 Macroeconomic Equilibrium

The core equilibrium dynamics are represented by a seventh-order non-linear differential equation system with four state (sluggish) variables, \(K_T, K_N, K_G \), and \(B \), and three jump variables, \(q_T, q_N \), and \(\lambda \):

\[
\begin{align*}
\dot{K}_T &= \left(\frac{q_T - 1}{h_T} - \delta_T \right) K_T - X \left(1 + \frac{h}{2} X \right) \quad (17a) \\
\dot{K}_N &= X - \delta_N K_N \quad (17b) \\
\dot{K}_G &= g^T_Y T + g^N_Y N - \delta_G K_G \quad (17c) \\
\dot{B} &= r B + C_T + I_T + \Omega_T - (1 - g^T_T - g^G_T) Y_T \quad (17d) \\
\dot{q}_T &= (r + \delta_T) q_T - \left\{ (1 - \tau_T) \partial Y_T / \partial K_T + \frac{(q_T - 1)^2}{2h_T} \right\} \quad (17e) \\
\dot{q}_N &= (r + \delta_N) q_N - \rho \left\{ (1 - \tau_N) \frac{\partial Y_N}{\partial K_N} + \frac{h_N}{2} \left(\frac{X}{K_N} \right)^2 \right\} \quad (17f) \\
\dot{\lambda} &= \lambda (\beta - r) \quad (17g)
\end{align*}
\]

The steady-state is attained when \(\dot{K}_T = \dot{K}_N = \dot{K}_G = \dot{B} = \dot{q}_T = \dot{q}_N = \dot{\lambda} = 0 \). The corresponding steady-state conditions are

\[
\begin{align*}
\left(\frac{\tilde{q}_T - 1}{h_T} - \delta_T \right) \tilde{K}_T &= \tilde{X} \left(1 + \frac{h}{2} \tilde{X} \right) \quad (18a) \\
\tilde{X} &\equiv \frac{\tilde{q}_N - \tilde{q}_T}{h \tilde{q}_T + h_N (\tilde{p} / \tilde{K}_N)} = \delta_N \tilde{K}_N \quad (18b) \\
g^T_Y \tilde{Y}_T + g^N_Y \tilde{Y}_N = \delta_G \tilde{K}_G \quad (18c) \\
\tilde{r} \tilde{B} + \tilde{C}_T + \tilde{I}_T + \tilde{\Omega}_T &= (1 - g^T_T - g^G_T) \tilde{Y}_T \quad (18d) \\
(1 - \tau_T) \partial \tilde{Y}_T / \partial K_T + \frac{(\tilde{q}_T - 1)^2}{2h_T} &= (\tilde{r} + \delta_T) \tilde{q}_T \quad (18e) \\
\tilde{p} \left\{ (1 - \tau_N) \frac{\partial \tilde{Y}_N}{\partial K_N} + \frac{h_N}{2} \left(\frac{\tilde{X}}{\tilde{K}_N} \right)^2 \right\} &= (\tilde{r} + \delta_N) \tilde{q}_N \quad (18f) \\
\tilde{r} &= \beta \quad (18g)
\end{align*}
\]
In addition to (18a)-(18g), we have the market clearing condition for the non-traded sector
\[(1 - g_N^l - g_N^c) \tilde{Y}_N = \tilde{C}_N + \tilde{\Omega}_N \tag{18h}\]
and the labor market equilibrium conditions
\[(1 - \tau_T) \frac{\partial \tilde{Y}_T}{\partial L_T} = \tilde{p}(1 - \tau_N) \frac{\partial \tilde{Y}_N}{\partial L_N} \tag{18i}\]
\[\tilde{L}_T + \tilde{L}_N = 1 \tag{18j}\]
Noting the policy functions for sectoral consumption in (12), the steady-state conditions (18a)-(18j) yield 10 equations that can be solved for \(\tilde{K}_T, \tilde{K}_N, \tilde{K}_G, \tilde{B}, \tilde{q}_T, \tilde{q}_N, \tilde{\lambda}, \tilde{\rho}, \tilde{L}_T, \) and \(\tilde{L}_N\). This completes the characterization of the steady-state equilibrium.\(^{14}\)

The dynamic system described in (17a)-(17g) is solved by linearization around the steady-state conditions (18a)-(18j):
\[\dot{Z}' = \Lambda \left(Z' - \tilde{Z}' \right) \tag{19}\]
where \(Z' = (K_T, K_N, K_G, B, q_T, q_N, \lambda)\) is the vector of states and controls, \(\Lambda\) is the 7x7 matrix of linearized coefficients, and \(\tilde{Z}' = (\tilde{K}_T, \tilde{K}_N, \tilde{K}_G, \tilde{B}, \tilde{q}_T, \tilde{q}_N, \tilde{\lambda})\) is a vector of the steady-state quantities.

3 The Benchmark Equilibrium: Calibration

Closed-form solutions cannot be obtained given the analytical complexity of the model and, therefore, the dynamics are solved and analyzed numerically. To solve the model, we propose the following functional forms for the utility and production functions:

\[U(C_T, C_N) = \frac{(C_T^{1-\theta} C_N^{\theta})^\gamma}{\gamma}, \quad \theta \in [0, 1], \quad -\infty < \gamma < 1 \tag{20a}\]

\[Y_T = A_T K_T^\eta \left[\alpha K_T^{-\rho} + (1 - \alpha) L_T^{-\rho} \right]^{-\frac{1}{\rho}}, \quad A_T > 0, \quad \alpha, \eta \in (0, 1), \quad \rho \in (-1, \infty) \tag{20b}\]

\[Y_N = A_N K_N^\phi \left[\varphi K_N^{-\rho} + (1 - \varphi) L_N^{-\rho} \right]^{-\frac{1}{\rho}}, \quad A_N > 0, \quad \varphi, \phi \in (0, 1), \quad \rho \in (-1, \infty) \tag{20c}\]

\[r = r^* + e^{a \left(\frac{B}{K} \right)} - 1, \quad a \geq 0, \quad K = K_T + pK_N \tag{20d}\]

\(^{14}\)Note that the steady-state borrowing rate on debt, \(\hat{r}\), is determined by (3): \(\hat{r} = r^* + \omega \left(\hat{B}/\hat{K} \right)\).
For the utility function in (20a), γ is related to the intertemporal substitution in consumption, $e = 1/(1-\gamma)$ and θ is the relative importance of non-traded consumption in the agent’s utility function. The overall productivities of the traded and non-traded sectors in (20b) and (20c) are determined by an exogenous component given by A_T and A_N, respectively, and the aggregate stock of public capital in the economy, provided by the government. The parameters η and ϕ denote the sectoral output elasticities of public capital. Given the homogeneity of the production functions, α and φ represent the private capital intensity in the traded and non-traded sectors, respectively. Finally, ρ is related to the elasticity of substitution between private capital and labor in the production function by $\xi = 1/(1 + \rho)$. The case where $\xi = 1 (\rho = 0)$ approximates the familiar Cobb-Douglas production function. Finally, (20d) specifies the interest rate on debt, where a is a parameter that measures the sensitivity of the borrowing rate to a change in the economy’s debt-servicing capacity, given by its aggregate debt-capital ratio. When $a = 0$, we have $r = r^*$, and the agent has unrestricted access to world capital markets. The numerical solution for the analytical model is characterized by four stable (negative) eigenvalues and three unstable (positive) eigenvalues, and is robust to variations in the model’s deep structural parameters and initial conditions for the state variables.

Table 1A describes the parameterization of the benchmark economy. The preference parameter γ is chosen to yield an intertemporal elasticity of substitution in consumption of 0.4, consistent with the evidence reviewed by Guvenen (2006). The choice of $\theta = 0.5$ ensures that there is no home bias in consumption and each good has the same weight in the utility function. The rate of time preference, β, is set at 0.06, and the world interest rate at 4 percent, while the borrowing premium a is chosen to ensure a plausible debt-to-GDP ratio in equilibrium. The exogenous productivity parameters A_T and A_N represent scale parameters and are set so that the traded sector is more productive than the non-traded sector. The output elasticity of public capital is set to 0.15 in each sector as a benchmark specification. There is a large empirical literature on the estimation of this elasticity and the range of estimates lie between 0.1 – 0.3; see Gramlich (1994). In a recent contribution, Bom and Ligthart (2009) review 67 such studies and estimate the long-run elasticity to be 0.146, which is close to our benchmark specification. The sectoral intensities of private capital, α and φ, are set equal to each other in the baseline specification. We will, of course, conduct a sensitivity analysis by differentially varying these sectoral elasticities and intensities. The intersectoral mobility cost parameter is set at $h = 30$, following the calculations of Morshed and Turnovsky (2004). Again, this parameter will be subject to a sensitivity analysis. The adjustment costs for both traded and non-traded capital, h_T and h_N, respectively are both set to 15, consistent with the findings of Auerbach and Kotlikoff (1987), Barro and Sala-i-
Martin (1995), and Ortiguera and Santos (1997). We assume a rate of public investment from traded output, $g_I^T = 0.02$ and from non-traded output, $g_N = 0.07$ to ensure that about 4.5% of aggregate output is spent on infrastructure investment, which is consistent with the corresponding long-run average for both OECD and developing countries. Given this specification, about a third of government investment comes from the traded goods sector, with the rest coming from the non-traded sector. The public consumption parameters g_C^T and g_C^N have been calibrated such that aggregate public consumption represents about 18% of GDP, with 7% of public consumption originating in the traded sector. These values are consistent with the findings of Abbas et al. (2011), who document that a non-trivial amount of government purchases in developing countries fall on traded goods.\footnote{As mentioned earlier (in Section 1), even though the share of public investment is smaller than that of public consumption in total government spending across countries, what matters for the dynamics of the real exchange rate is the shock or innovation to a particular type of public spending, and not its share in total spending.} We also assume that there are no distortionary taxes in the benchmark equilibrium and all government spending is financed through lumpsum taxes. The benchmark equilibrium is calibrated for the Cobb-Douglas production function.

Table 1B reports the benchmark steady-state equilibrium for the key macroeconomic variables of the model. For example, the share of employment and output of the traded goods sector is about 43%. About 53% of private capital is employed in the traded good sector, while the capital-output ratio is 1.45. The share of aggregate private consumption in GDP is about 70%, with both sectors contributing equally to total consumption (since there is no home bias). The steady-state share of private debt in GDP is about 36%, and the ratio of public to private capital is 0.35. The long-run real exchange rate is about 2.33.

\section{Policy Analysis: Fiscal Shocks}

In this section, we analyze the model’s dynamic implications for changes in fiscal policy. Specifically, we focus on the following types of permanent government spending shocks:

(a) An increase in government spending from traded output,
(b) an increase in government spending from non-traded output, and
(c) an increase in aggregate government spending, with an equal and proportionate increase in government spending from each sector.

For each of the three cases above, we compare the effects of an increase in government investment with an equivalent increase in government consumption. We calibrate the increase in sectoral government spending (investment or consumption) to ensure that in each case
the share of government expenditure in GDP (investment or consumption) rises by one percentage-point from its baseline specification.

4.1 Public Investment

Table 2A reports the steady-state effects of an increase in public investment, corresponding to the three cases (a)-(c) above, with the dynamic adjustment of the key macroeconomic variables illustrated in Figure 1. In all three cases, the spending increase is financed by an appropriate adjustment of lumpsum taxes to balance the government’s budget. Using a non-distortionary financing instrument has the advantage of decoupling the effects of public spending from revenues. The steady-state changes in variables are reported as percentage deviations relative to their pre-shock benchmark levels.\footnote{Changes in welfare levels are computed by an equivalent variation in consumption across steady states, i.e., we determine the required change (in percentage terms) in the initial consumption level (and therefore in the consumption flow over the entire adjustment path), such that the agent is indifferent between the initial welfare level and that following the policy change.}

As is evident from Table 2A, all three government spending shocks, being tied to investment activity, have an expansionary effect on the aggregate economy in the long-run, with aggregate consumption and GDP increasing from their steady-state levels. The economy’s net indebtedness increases, and the long-run real exchange rate appreciates in equilibrium. Long-run welfare also increases in each case. For the aggregate variables, an increase in public investment from traded output has the most expansionary effect on the economy in the long-run. For the sectoral variables, however, the effects of public investment are asymmetric, depending on the sectoral source of government investment. The shares of capital, labor and output for the traded sector increase when the increase in public investment impinges on the traded sector, while the shares of labor and output in the traded sector decline when the non-traded sector is the source of the spending increase. When aggregate spending increases across both sectors, the magnitude of the long-run responses represent an intermediate case between the increase in traded and non-traded government spending.

The intuition behind the above results can be better understood by a depiction of the dynamic response of the economy to these shocks, which displays some interesting transitional characteristics not evident from the long-run responses. This is illustrated in Figure 1, which plots the time paths (in terms of percentage deviations from the steady-state) of the shares of labor, capital, and output in the traded sector, aggregate consumption, the current account (debt), and the real exchange rate.

On impact of the increase in public investment, the real exchange rate appreciates to clear the goods market, since sectoral private capital is instantaneously fixed. Consequently, the
instantaneous rise in the relative price of non-traded goods leads to a decrease in the share of employment and output in the traded sector. Since the increase in public spending is tied to infrastructure (public capital), the implied long-run increase in private productivity leads to an increase in short-run consumption, even though the increase in government spending represents a resource withdrawal from the private sector in the short run. These instantaneous responses are robust to all three types of government investment (i.e., traded, non-traded, or aggregate). However, following these responses, the transition paths of the key macroeconomic variables depend critically on the sectoral origin of government spending. For example, when government investment increases from traded output, the higher demand for goods in this sector tends to increase its share of both employment and capital over time. Consequently, the share of the traded sector in total output also increases in transition. The higher relative demand emanating from the traded sector reduces the relative price of non-traded goods, leading to a sharp depreciation of the real exchange rate in transition. Over time, as the higher government spending increases the economy’s stock of public capital, its positive spillover effects for private productivity generates a Balassa-Samuelson effect, leading to a net appreciation of the real exchange rate in the long-run. An interesting aspect of the macroeconomic adjustment is that the transitional path of the real exchange rate is non-monotonic in nature, represented by an U-shaped adjustment path. The fact that government spending does not immediately translate into a higher stock of public capital, but does so only gradually over time is key to the non-monotonic adjustment of the real exchange rate. As such, the short run behavior of the real exchange rate is determined by demand-side factors, while in the long-run the supply-side dominates.

An increase in public investment from the non-traded sector generates exactly the opposite dynamic response relative to the case where government spending impinges on traded goods. In this case, the higher demand for non-traded goods generated by the government leads to a flow of both labor and capital into the non-traded sector, thereby reducing their corresponding shares in the traded sector. Consequently, the decline in the relative price of the non-traded good is much smaller than in the previous case, and even though the real exchange rate again displays a U-shaped adjustment path, the real exchange rate is always above its pre-shock equilibrium level.

In both the above examples of an increase in public investment, private consumption increases monotonically in transition to its long-run steady-state. The economic expansion also increases borrowing by the private agent, thereby worsening the current account, both in transition as well as in the long run. The case where there is an aggregate increase in public

\[17\] We will return to the issue of the short-run correlation between government spending, the real exchange rate and aggregate consumption in section 4.3.
investment is intermediate to the polar examples of the increases in traded and non-traded public investment.

4.2 Public Consumption

In this section, we compare the dynamic effects of an increase in public investment with a corresponding increase in public consumption. As before, we consider three cases, where the increase in public consumption spending impinges on the traded or non-traded sector, or equally on both sectors. Table 2B reports the steady-state changes, while Figure 2 illustrates the transitional adjustment of the economy.

Comparing Tables 2A and 2B, we see that the aggregate effects of an increase in public consumption, irrespective of the sector of origin, are much smaller than those for public investment. Further, the increase in public consumption always crowds out private consumption in the long-run, in sharp contrast to the case of public investment. Aggregate welfare also declines in this case, as opposed to the welfare increase reported under an increase in public investment. Public consumption from non-traded output leads to a permanent economic contraction and a net real appreciation of the exchange rate. On the other hand, public consumption from traded output has exactly the opposite effect.

Figure 2 shows that when the government spending increase takes the form of consumption, the economy’s adjustment is very quick and monotonic, in sharp contrast to the case of public investment. Since government spending is not tied to investment, it has only demand-side implications in both the short run and the long run. Therefore, the trade-offs observed in the dynamic adjustment of sectoral labor, output, and the real exchange rate in Figure 1 are now absent. Further, public consumption also crowds out private consumption, both in the short run as well as the long run. The time path of the real exchange rate also does not display the U-shaped trajectory observed in Figure 1, thereby pointing to the importance of disentangling the effects of government investment from consumption.

4.3 Public Investment, the Real Exchange Rate, and Private Consumption

In this section, we explore the short-run relationship between public investment, the real exchange rate, and private consumption, to variations in (i) the underlying financing policy, and (ii) the relative sectoral output elasticity of public capital. With respect to financing policies, we consider three cases:

a. spending increase financed by lumpsum taxes (benchmark case)
b. spending increase financed by a tax on traded output
c. spending increase financed by a tax on non-traded output

For the sectoral elasticity of public capital, we also consider three possibilities:

a. Public capital is more important in the traded sector, i.e., $\eta > \phi$ ($\eta = 0.15, \phi = 0.05$)

b. Public capital is equally important for both sectors, i.e., $\eta = \phi$ ($\eta = \phi = 0.15$)

c. Public capital is more important for the non-traded sector, i.e., $\eta < \phi$ ($\eta = 0.05, \phi = 0.15$).

Figure 3 depicts the public investment-real exchange rate relationship for the above cases, and Figure 4 depicts the public investment-private consumption relationship. Our discussion will focus only on the instantaneous responses of the real exchange rate and private consumption following an increase in government spending, to be consistent with the corresponding empirical literature. Essentially, we are looking for conditions under which we observe the following empirical regularities: (i) a negative short-run correlation between government spending and the real exchange rate, i.e., an instantaneous real depreciation of the exchange rate, and (ii) a positive short-run correlation between government spending and consumption, i.e., an instantaneous increase in private consumption.\(^{18}\)

From Figure 3A, we see that both the underlying financing policy and the sectoral elasticity of public capital play an important role in determining the instantaneous correlation between government spending and the real exchange rate. Qualitatively, the empirically observed real depreciation of the exchange rate occurs when government spending is financed by a tax on the output of the traded sector. This is especially important for developing countries where the non-traded sector often represents the informal economy, which is outside of the tax collection radar of the government (see La Porta and Schleifer, 2014). The implication here is that if the traded goods sector bears the tax burden of financing an increase in government spending, the real exchange rate depreciates in the short run. This happens because the long-run implied productivity benefit from a higher stock of public capital is more than offset by a decline in the after-tax return on private capital (in the short-run).

Figure 3B suggests that when the output elasticity of public capital is greater in the non-traded sector than in the traded sector, then an increase in government investment can lead to a real depreciation of the exchange rate when government spending either impinges on traded output or equally on both sectors. When public capital is more productive for the non-traded sector, any additional increase in government spending generates diminishing returns in that sector, leading to a fall in the relative price of non-traded goods.

Figure 4 considers the relationship between government spending and private consump-

\(^{18}\)See, for example, Fatas and Mihov (2001), Blanchard and Perotti (2002), Corsetti and Muller (2006), Kim and Roubini (2008), Monacelli and Perotti (2010), and Ravn et al. (2012).
tion. With respect to financing policies (Figure 4A), the results suggest that when government spending increases on traded goods, the short-run response of consumption is positive, irrespective of the underlying financing policy. The financing policy matters when government spending increases in the non-traded sector or when there is an aggregate increase in spending. Here, lumpsum tax-financing or a tax on non-traded output generates an instantaneous increase in private consumption. On the other hand, from Figure 4B, we see that the short-run correlation between government spending and consumption is positive when public capital is relatively equally or more productive for the traded goods sector.

5 Real Exchange Rate Dynamics: Sensitivity Analysis

This section conducts a sensitivity analysis of the dynamic response of the real exchange rate to public investment shocks for variations in three deep structural parameters of the model: (i) the sectoral intensities of private capital, α and φ, (ii) the elasticity of substitution between private capital and labor in production, $\xi = 1/(1 + \rho)$, and (iii) the intersectoral mobility cost parameter for private capital, h. The results are reported in Figures 5A-C.

5.1 Relative Sectoral Intensity of Private Capital

We consider three cases: the traded sector is (i) more capital intensive, i.e. $\alpha > \varphi$ ($\alpha = 0.35, \varphi = 0.25$), (ii) equally capital intensive, i.e., $\alpha = \varphi = 0.35$, and (iii) less capital intensive, i.e., $\alpha < \varphi$ ($\alpha = 0.25, \varphi = 0.35$), relative to the non-traded sector. Figure 5A depicts the adjustment path of the real exchange rate following the three types of government investment shocks we have considered before (traded, non-traded, and aggregate) for these three cases. As the capital intensity in the traded sector increases relative to the non-traded sector, (i) the long-run real appreciation of the real exchange rate increases in magnitude, and (ii) the non-monotonicity (U-shape) of the transitional adjustment of the real exchange rate is preserved, but is more pronounced when the traded sector is relatively more capital intensive. These results are robust to the origin of government spending, i.e., traded, non-traded, or aggregate.

5.2 Elasticity of Substitution in Production

Figure 5B plots the response of the real exchange rate to the three underlying government spending shocks for three values of the elasticity of substitution in production between private capital and labor: (i) $\xi = 0.75$, (ii) $\xi = 1$, and (iii) $\xi = 1.25$. The larger is the elasticity of substitution in production, larger is the short-run and long-run response of
the real exchange rate to a government spending shock. Further, the higher the elasticity of substitution in production, the more persistent is the adjustment of the real exchange rate. Though variations in the elasticity of substitution in production do not affect the non-monotonic transitional path of the real exchange rate, low values of the elasticity generate more non-monotonicity in the adjustment of the real exchange rate.

5.3 Intersectoral Mobility Costs

Figure 5C illustrates the sensitivity of the real exchange rate dynamics generated by the three fiscal spending shocks to variations in the magnitude of intersectoral mobility costs for private capital. We consider three cases: (i) $h = 0$ (costless transfer of capital across sectors), (ii) $h = 50$, and (iii) $h = 100$. As is evident from the plots, the intersectoral mobility cost does not affect the instantaneous response of the real exchange rate. However, it does affect the long-run and transitional behavior of the real exchange rate. Higher the cost of mobility of capital, more persistent and non-monotonic is the adjustment of the real exchange rate. Further, a higher mobility cost also translates into a larger real appreciation in the long run.

6 Conclusions

In this paper, we have analyzed the mechanism through which government spending affects the dynamic adjustment of a small open economy. While much of the literature has previously focused on the effects of government consumption, government investment and financing policies have received far less attention. In this context, we introduce government investment in the form of a gradually accumulating stock of productivity-augmenting infrastructure capital, which in turn can be financed by a range of distortionary and non-distortionary tax instruments. Further, another important feature of our analysis is the presence of convex mobility costs for transferring private capital across sectors.

Our results indicate that government spending, when it leads to the accumulation of public capital, generates a non-monotonic U-shaped adjustment path for the real exchange rate. Given the persistence of this adjustment path, a transitional depreciation that lasts for several periods after the incidence of the shock can be more than reversed over time, as the resource withdrawal effects of government spending in the short run are dominated by its productivity impact over time. In contrast, government consumption leads to a much quicker and monotonic adjustment of the real exchange rate, devoid of any intertemporal trade-offs. Whether government spending leads to a short-run (long-run) depreciation or appreciation of the real exchange rate depends critically on (i) the sectoral composition of the spending,
(ii) the underlying financing policy, (iii) the sectoral capital-intensity in production, (iv) the sectoral output elasticities of public capital, (v) the elasticity of substitution in production, and (vi) intersectoral mobility costs. Our model is also able to identify conditions under which the model generates the observed positive short-run correlation between government spending and private consumption. In this context, we show that the presence of public investment is crucial to generating this positive correlation.

While we have focused on the link between government investment and the real exchange rate, the framework can be easily extended to incorporate other types of government spending, such as those on education, healthcare, and alternative sources of financing such as foreign aid. In this context, another important consideration is the consequence of capital-market imperfections or constraints on government borrowing to finance spending. All these represent promising areas for future research.
TABLE 1. BENCHMARK EQUILIBRIUM

A. PARAMETERIZATION

Preference:	$\gamma = -1.5, \beta = 0.06, \theta = 0.5, r = 0.04, a = 0.08$
Productivity:	$\alpha = \varphi = 0.35, A_T = 1.5, A_N = 1, \eta = \phi = 0.15$
Installation and capital mobility costs:	$h_T = h_N = 15, h = 30$
Policy:	$G^l_T / G = 0.34, G^c_T / G = 0.07, \tau_T = \tau_N = 0$

B. BENCHMARK STEADY-STATE QUANTITIES

<table>
<thead>
<tr>
<th>L_T</th>
<th>K_T / K</th>
<th>Y_T / Y</th>
<th>C / Y</th>
<th>K / Y</th>
<th>B / Y</th>
<th>K_G / K</th>
<th>G^l / Y</th>
<th>G^c / Y</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.431</td>
<td>0.534</td>
<td>0.431</td>
<td>0.698</td>
<td>1.454</td>
<td>0.359</td>
<td>0.354</td>
<td>0.049</td>
<td>0.182</td>
<td>2.332</td>
</tr>
</tbody>
</table>

$i = T, N$
TABLE 2. GOVERNMENT SPENDING SHOCKS: LONG-RUN EFFECTS*

A. Increase in Public Investment

<table>
<thead>
<tr>
<th></th>
<th>L_T</th>
<th>K_T / K</th>
<th>Y_T / Y</th>
<th>C</th>
<th>Y</th>
<th>B</th>
<th>p</th>
<th>Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δg_T</td>
<td>2.001</td>
<td>1.528</td>
<td>2.001</td>
<td>10.846</td>
<td>9.197</td>
<td>9.157</td>
<td>0.759</td>
<td>3.345</td>
</tr>
<tr>
<td>Δg_N</td>
<td>-0.846</td>
<td>0.105</td>
<td>-0.847</td>
<td>5.001</td>
<td>5.218</td>
<td>4.378</td>
<td>0.657</td>
<td>0.416</td>
</tr>
<tr>
<td>$\Delta g = \Delta g_T + \Delta g_N$</td>
<td>0.574</td>
<td>0.817</td>
<td>0.573</td>
<td>7.872</td>
<td>7.156</td>
<td>6.709</td>
<td>0.705</td>
<td>1.816</td>
</tr>
</tbody>
</table>

B. Increase in Public Consumption

<table>
<thead>
<tr>
<th></th>
<th>L_T</th>
<th>K_T / K</th>
<th>Y_T / Y</th>
<th>C</th>
<th>Y</th>
<th>B</th>
<th>p</th>
<th>Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δg_T</td>
<td>1.312</td>
<td>0.519</td>
<td>1.313</td>
<td>-1.329</td>
<td>0.061</td>
<td>0.559</td>
<td>-0.136</td>
<td>-1.383</td>
</tr>
<tr>
<td>Δg_N</td>
<td>-1.021</td>
<td>-0.409</td>
<td>-1.021</td>
<td>-1.370</td>
<td>-0.048</td>
<td>-0.436</td>
<td>0.106</td>
<td>-1.323</td>
</tr>
<tr>
<td>$\Delta g = \Delta g_T + \Delta g_N$</td>
<td>0.146</td>
<td>0.058</td>
<td>0.146</td>
<td>-1.348</td>
<td>0.007</td>
<td>0.062</td>
<td>-0.015</td>
<td>-1.354</td>
</tr>
</tbody>
</table>

*All results are reported as percentage deviations relative to their pre-shock equilibrium levels
FIGURE 1. Increase in Public Investment (Lumpsum Tax-financed)

Share of Traded Sector employment
Share of Traded Sector Capital
Share of Traded Sector Output
Aggregate Consumption
Current Account
Real Exchange Rate

- Government spending on traded output
- Government spending on non-traded output
- Aggregate increase in government spending

Time paths represent percentage deviation from pre-shock steady-state
FIGURE 2. Increase in Public Consumption (Lumpsum Tax-financed)

- Share of Traded Sector employment
- Share of Traded Sector Capital
- Share of Traded Sector Output
- Aggregate Consumption
- Current Account
- Real Exchange Rate

Time paths represent percentage deviation from pre-shock steady-state
FIGURE 3. Public Investment and the Real Exchange Rate

A. Sensitivity to Financing Policies

- - - - - financed by lumpsum taxes ____ ____ financed by tax on traded output ______ financed by tax on non-traded output

B. Sectoral Output Elasticity of Public Capital

- - - - - \(\eta = 0.15, \phi = 0.05 \) ____ ____ \(\eta = \phi = 0.15 \) ______ \(\eta = 0.05, \phi = 0.15 \)

Time paths represent percentage deviation from pre-shock steady-state
FIGURE 4. Public Investment and Private Consumption

A. Financing Policies

- - - - - financed by lumpsum taxes __ __ financed by tax on traded output _____ financed by tax on non-traded output

B. Sectoral Elasticity of Public Capital

\[\eta = 0.15, \phi = 0.05 \] \[\eta = \phi = 0.15 \] \[\eta = 0.05, \phi = 0.15 \]

Time paths represent percentage deviation from pre-shock steady-state
FIGURE 5. Real Exchange Rate Dynamics: Sensitivity Analysis

A. Sectoral Intensity of Private Capital

- Govt. spending on traded output
- Govt. spending on non-traded output
- Aggregate increase in govt. spending

B. Elasticity of Substitution in Production

- Govt. spending on traded output
- Govt. spending on non-traded output
- Aggregate increase in govt. spending

C. Intersectoral Mobility Cost for Private Capital

- Govt. spending on traded output
- Govt. spending on non-traded output
- Aggregate increase in govt. spending

Time paths represent percentage deviation from pre-shock steady-state.
References

